首页> 外文OA文献 >Integrability conditions between the first and second Cosserat deformation tensor in geometrically nonlinear micropolar models and existence of minimizers
【2h】

Integrability conditions between the first and second Cosserat deformation tensor in geometrically nonlinear micropolar models and existence of minimizers

机译:第一和第二Cosserat之间的可积性条件   几何非线性微极模型中的变形张量及存在性   最小化者

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this note we extend integrability conditions for the symmetric stretchtensor $U$ in the polar decomposition of the deformation gradient$\nabla\varphi=F=R\,U$ to the non-symmetric case. In doing so we recoverintegrability conditions for the first Cosserat deformation tensor. Let $F=\barR\,\bar U$ with $\bar R:\Omega\subset\mathbb{R}^3\longrightarrow\mathrm{SO}(3)$and $\bar U:\Omega\subset\mathbb{R}^3\longrightarrow \mathrm{GL}(3)$. Then$\mathfrak{K}:={\bar R}^T\mathrm{Grad}\,{\bar R}=\mathrm{Anti}\Big(\frac{1}{\mathrm{det} \bar U}\Big[\bar U(\mathrm{Curl} \bar U)^T-\frac{1}{2}\mathrm{tr}(\bar U(\mathrm{Curl} \bar U)^T) 1\!\!1 \Big]\bar U\Big),$ giving aconnection between the first Cosserat deformation tensor $\bar U$ and thesecond Cosserat tensor ${\mathfrak{K}}$. (Here, Anti denotes an isomorphismbetween $\mathbb{R}^{3\times 3}$ and$\mathfrak{So}(3):=\{\,\mathfrak{A}\in\mathbb{R}^{3\times 3\times3}\,|\,\mathfrak{A}.u\in\mathfrak{so}(3)\;\forall u\in \mathbb{R}^3\}$.) Theformula shows that it is not possible to prescribe $\bar U$ and $\mathfrak{K}$independent from each other. We also propose a new energy formulation ofgeometrically nonlinear Cosserat models which completely separate the effectsof nonsymmetric straining and curvature. For very weak constitutive assumptions(no direct boundary condition on rotations, zero Cosserat couple modulus,quadratic curvature energy) we show existence of minimizers in Sobolev-spaces.
机译:在此注释中,我们将对称拉伸张量$ U $在变形梯度$ \ nabla \ varphi = F = R \,U $的极性分解中的可扩展性条件扩展到非对称情况。这样做,我们恢复了第一个Cosserat变形张量的可积性条件。让$ F = \ barR \,\ bar U $与$ \ bar R:\ Omega \ subset \ mathbb {R} ^ 3 \ longrightarrow \ mathrm {SO}(3)$和$ \ bar U:\ Omega \ subset \ mathbb {R} ^ 3 \ longrightarrow \ mathrm {GL}(3)$。然后$ \ mathfrak {K}:= {\ bar R} ^ T \ mathrm {Grad} \,{\ bar R} = \ mathrm {Anti} \ Big(\ frac {1} {\ mathrm {det} \ bar U} \ Big [\ bar U(\ mathrm {Curl} \ bar U)^ T- \ frac {1} {2} \ mathrm {tr}(\ bar U(\ mathrm {Curl} \ bar U)^ T )1 \!\!1 \ Big] \ bar U \ Big),$在第一个Cosserat变形张量$ \ bar U $和第二个Cosserat张量$ {\ mathfrak {K}} $之间建立连接。 (此处,Anti表示$ \ mathbb {R} ^ {3 \ times 3} $和$ \ mathfrak {So}(3)之间的同构:= \ {\,\ mathfrak {A} \ in \ mathbb {R} ^ {3 \ times3 \ times3} \,| \,\ mathfrak {A} .u \ in \ mathfrak {so}(3)\; \ forall u \ in \ mathbb {R} ^ 3 \} $。)显示不可能规定$ \ bar U $和$ \ mathfrak {K} $彼此独立。我们还提出了几何非线性Cosserat模型的新能量公式,该模型完全分离了非对称应变和曲率的影响。对于非常弱的本构假设(旋转没有直接边界条件,零Cosserat耦合模量,二次曲率能量),我们证明了Sobolev空间中存在极小值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号